Towards a Curry-Howard Correspondence for Linear, Reversible Computation - Laboratoire Méthodes Formelles
Communication Dans Un Congrès Année : 2021

Towards a Curry-Howard Correspondence for Linear, Reversible Computation

Résumé

In this paper, we present a linear and reversible language with inductive and coinductive types, together with a Curry-Howard correspondence with the positive fragment of the logic µMALL: linear logic extended with least fixed points allowing inductive statements. Linear, reversible computation makes an important sub-class of quantum computation without measurement. In the latter, the notion of purely quantum recursive type is not yet well understood. Moreover, models for reasoning about quantum algorithms only provide complex types for classical datatypes: there are usually no types for purely quantum objects beside tensors of quantum bits. This work is a first step towards understanding purely quantum recursive types.
Fichier principal
Vignette du fichier
TLLA_2021_paper_7.pdf (175.29 Ko) Télécharger le fichier

Dates et versions

lirmm-03271484 , version 1 (25-06-2021)

Licence

Identifiants

  • HAL Id : lirmm-03271484 , version 1

Citer

Kostia Chardonnet, Alexis Saurin, Benoît Valiron. Towards a Curry-Howard Correspondence for Linear, Reversible Computation. 5th International Workshop on Trends in Linear Logic and Applications (TLLA 2021), Jun 2021, Rome (virtual), Italy. ⟨lirmm-03271484⟩
199 Consultations
148 Téléchargements

Partager

More