Velocity Enhancement by Synchronization of Magnetic Domain Walls - Laboratoire de Physique des Solides d'Orsay
Article Dans Une Revue Physical Review Letters Année : 2018

Velocity Enhancement by Synchronization of Magnetic Domain Walls

Stefania Pizzini
  • Fonction : Auteur
  • PersonId : 923255
Joao Sampaio
Andre Thiaville
  • Fonction : Auteur
  • PersonId : 1021637
Stanislas Rohart
Jan Vogel

Résumé

Magnetic domain walls are objects whose dynamics is inseparably connected to their structure. In this work we investigate magnetic bilayers, which are engineered such that a coupled pair of domain walls, one in each layer, is stabilized by a cooperation of Dzyaloshinskii-Moriya interaction and flux-closing mechanism. The dipolar field mediating the interaction between the two domain walls, links not only their position but also their structure. We show that this link has a direct impact on their magnetic field induced dynamics. We demonstrate that in such a system the coupling leads to an increased domain wall velocity with respect to single domain walls. Since the domain wall dynamics is observed in a precessional regime, the dynamics involves the synchronization between the two walls, to preserve the flux closure during motion. Properties of these coupled oscillating walls can be tuned by an additional in-plane magnetic field enabling a rich variety of states, from perfect synchronization to complete detuning.

Dates et versions

hal-01867200 , version 1 (04-09-2018)

Identifiants

Citer

Aleš Hrabec, Viola Křižáková, Stefania Pizzini, Joao Sampaio, Andre Thiaville, et al.. Velocity Enhancement by Synchronization of Magnetic Domain Walls. Physical Review Letters, 2018, 120 (22), pp.227204. ⟨10.1103/PhysRevLett.120.227204⟩. ⟨hal-01867200⟩
44 Consultations
0 Téléchargements

Altmetric

Partager

More