Nonparametric Estimation of the Transition Density Function for Diffusion Processes - MAP5
Pré-Publication, Document De Travail Année : 2024

Nonparametric Estimation of the Transition Density Function for Diffusion Processes

Fabienne Comte
Nicolas Marie

Résumé

We assume that we observe $N$ independent copies of a diffusion process on a time-interval $[0,2T]$. For a given time $t$, we estimate the transition density $p_t(x,y)$, namely the conditional density of $X_{t + s}$ given $X_s = x$, under conditions on the diffusion coefficients ensuring that this quantity exists. We use a least squares projection method on a product of finite dimensional spaces, prove risk bounds for the estimator and propose an anisotropic model selection method, relying on several reference norms. A simulation study illustrates the theoretical part for Ornstein-Uhlenbeck or square-root (Cox-Ingersoll-Ross) processes.
Fichier principal
Vignette du fichier
Nonparametric_Estimation_of_the_Transition_Density_Function_for_Diffusion_Processes.pdf (2.27 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04527294 , version 1 (29-03-2024)
hal-04527294 , version 2 (01-11-2024)

Identifiants

  • HAL Id : hal-04527294 , version 2

Citer

Fabienne Comte, Nicolas Marie. Nonparametric Estimation of the Transition Density Function for Diffusion Processes. 2024. ⟨hal-04527294v2⟩
98 Consultations
47 Téléchargements

Partager

More