Energy-filtered electron microscopy for imaging core–shell nanostructures - Laboratoire Matériaux et Phénomènes Quantiques Accéder directement au contenu
Article Dans Une Revue Journal of Nanoparticle Research Année : 2008

Energy-filtered electron microscopy for imaging core–shell nanostructures

Résumé

CuAg core–shell nanoparticles are synthesized by ultra-high vacuum thermal evaporation. We show on this system how the Energy-Filtered Transmission Electron Microscopy (EFTEM) technique allows one to improve the characterization by precisely pointing out the formation of core-shell arrangements in bimetallic nanoparticle assemblies. A criterion to measure the shell thickness from EFTEM images on unique core-shell nanoparticles is defined, that can be used for core-shell nanoparticles of any sizes, with shell thicknesses over 1 nm. It is based on the intensity variation along a line drawn across a core-shell nanoparticle on a EFTEM image. This criterion has been validated by a close comparison of the shell thickness measurements performed in this work and the ones obtained by acoustic micro-Raman spectroscopy. Using this criterion, we report a strong correlation between the size of the Cu cores and the formation of the core-shell arrangements in the nanoparticle assembly studied in this work. The influence of the Cu core shape is also evidenced. The characterisation of such systems using High Resolution TEM (HRTEM) is also discussed
Fichier principal
Vignette du fichier
LangloisC_OikawaT_BayleGuillemaudP_EtAl_2008.pdf (450.72 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02161263 , version 1 (20-06-2019)

Identifiants

Citer

Cyril Langlois, T. Oikawa, Pascale Bayle-Guillemaud, Christian Ricolleau. Energy-filtered electron microscopy for imaging core–shell nanostructures. Journal of Nanoparticle Research, 2008, 10 (6), pp.997-1007. ⟨10.1007/s11051-007-9329-0⟩. ⟨hal-02161263⟩
44 Consultations
124 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More