This paper presents an experimental study of a hybrid thermochemical cycle for the simultaneous cogeneration of cold and mechanical power, and thermal storage based on medium temperature sources. This concept is based on the integration of an expander machine on the reactive gas flow between the evaporator and the reactor to allow mechanical work production. The paper shows the proof of concept of this hybridization by continuous mechanical production and cold during the whole production phase: 68.33 kJ mechanical energy and 15.18 MJ cold, stable pressure ratio at the expander (around 1.3) and stable rotational speed (around 400 rpm). The prototype conception and design are detailed. The integration of the expander creates a pressure difference between the evaporator and the reactor (contrary to a classical thermochemical cycle), and thus an experimental sensitivity study investigating the effect of the cold production temperature at the evaporator (which defines the inlet pressure of the expander) on the mechanical production of the prototype and its dynamics is done. This allowed to analyze the strong coupling between the reactor and the expander in different operating conditions, experimentally and from a theoretical point of view. Indeed, the identified limitations of these two main components, it is worth mentioning that this is the first hybrid thermochemical prototype with stable output productions. The prototype works properly by providing continuous mechanical production during the whole production phase under different cold temperatures and constant electrical load, in comparison with what was found in the literature.
Experimental study of a hybrid thermochemical cycle and proof of concept by stable mechanical production at the expander, contrary to what is found in literature. Sensitivity study on the effect of cold temperature on the prototype's cogeneration, for a fixed electrical resistance load at the generator-expander. Experimental analysis of the coupling between the reactor and the expander under different operating conditions: variable cold temperatures. Analytical analysis of the cycle.