The control of nitric oxide dynamics and interaction with substituted zinc-phthalocyanines - Biologie du chloroplaste et perception de la lumière chez les micro-algues
Article Dans Une Revue Dalton Transactions Année : 2024

The control of nitric oxide dynamics and interaction with substituted zinc-phthalocyanines

Résumé

Phthalocyanines are artificial macrocycles that can harbour a central metal atom with four symmetric coordinations. Similar to metal-porphyrins, metal-phthalocyanines (M-PCs) may bind small molecules, especially diatomic gases such as NO and O2. Furthermore, various chemical chains can be grafted at the periphery of the M-PC macrocycle, which can change its properties, including the interaction with diatomic gases. In this study, we synthesized Zn-PCs with two different substituents and investigated their effects on the interaction and dynamics of nitric oxide (NO). Time-resolved absorption spectroscopy from picosecond to millisecond revealed that NO dynamics dramatically depends on the nature of the groups grafted to the Zn-PC macrocycle. These experimental results were rationalized by DFT calculations, which demonstrate that electrostatic interactions between NO and the quinoleinoxy substituent modify the potential energy surface and decrease the energy barrier for NO recombination, thus controlling its affinity.
Fichier sous embargo
Fichier sous embargo
Date de visibilité indéterminée

Dates et versions

inserm-04398603 , version 1 (16-01-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Nassim Ben Brahim, Sarra Touaiti, Julien Sellés, Jean-Christophe Lambry, Michel Negrerie. The control of nitric oxide dynamics and interaction with substituted zinc-phthalocyanines. Dalton Transactions, 2024, 53 (2), pp.772-780. ⟨10.1039/d3dt03356b⟩. ⟨inserm-04398603⟩
27 Consultations
8 Téléchargements

Altmetric

Partager

More