Atmospheric Escape and Evolution of Terrestrial Planets and Satellites - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Space Science Reviews Année : 2008

Atmospheric Escape and Evolution of Terrestrial Planets and Satellites

Résumé

The origin and evolution of Venus', Earth's, Mars' and Titan's atmospheres are discussed from the time when the active young Sun arrived at the Zero-Age-Main-Sequence. We show that the high EUV flux of the young Sun, depending on the thermospheric composition, the amount of IR-coolers and the mass and size of the planet, could have been responsible that hydrostatic equilibrium was not always maintained and hydrodynamic flow and expansion of the upper atmosphere resulting in adiabatic cooling of the exobase temperature could develop. Furthermore, thermal and various nonthermal atmospheric escape processes influenced the evolution and isotope fractionation of the atmospheres and water inventories of the terrestrial planets and Saturn's large satellite Titan efficiently.

Dates et versions

hal-00375029 , version 1 (11-04-2009)

Identifiants

Citer

H. Lammer, J. F. Kasting, Eric Chassefière, R.E. Johnson, Y.N. Kulikov, et al.. Atmospheric Escape and Evolution of Terrestrial Planets and Satellites. Space Science Reviews, 2008, 139 (1-4), pp.399-436. ⟨10.1007/s11214-008-9413-5⟩. ⟨hal-00375029⟩
78 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More