Fractional Sobolev Spaces and Functions of Bounded Variation of One Variable - CNRS - Centre national de la recherche scientifique
Article Dans Une Revue Fractional Calculus & Applied Analysis Année : 2017

Fractional Sobolev Spaces and Functions of Bounded Variation of One Variable

Résumé

We investigate the 1D Riemann-Liouville fractional derivative focusing on the connections with fractional Sobolev spaces, the space BV of functions of bounded variation, whose derivatives are not functions but measures and the space SBV, say the space of bounded variation functions whose derivative has no Cantor part. We prove that SBV is included in W^{s,1} $ for every s \in (0,1) while the result remains open for BV. We study examples and address open questions.
Fichier principal
Vignette du fichier
Bergounioux631_revised.pdf (273.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01287725 , version 1 (14-03-2016)
hal-01287725 , version 2 (21-06-2017)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Maïtine Bergounioux, Antonio Leaci, Giacomo Nardi, Franco Tomarelli. Fractional Sobolev Spaces and Functions of Bounded Variation of One Variable. Fractional Calculus & Applied Analysis, 2017, ⟨10.1515/fca-2017-0049⟩. ⟨hal-01287725v2⟩
276 Consultations
4555 Téléchargements

Altmetric

Partager

More