Elastocapillary Instability in Mitochondrial Fission - CNRS - Centre national de la recherche scientifique
Communication Dans Un Congrès Année : 2016

Elastocapillary Instability in Mitochondrial Fission

Résumé

Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. We propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission [Gonzalez-Rodriguez et al., Phys. Rev. Lett. 115, 088102 (2015)]. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics. © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

Dates et versions

hal-01324881 , version 1 (01-06-2016)

Identifiants

Citer

David Gonzalez-Rodriguez, Sébastien Sart, Avin Babataheri, David Tareste, Abdul I. Barakat, et al.. Elastocapillary Instability in Mitochondrial Fission. 60th Annual Meeting of the Biophysical-Society, Biophysical-Society, Feb 2016, Los Angeles, United States. pp.472a, ⟨10.1016/j.bpj.2015.11.2527⟩. ⟨hal-01324881⟩
199 Consultations
0 Téléchargements

Altmetric

Partager

More