Population Pharmacokinetics of Ibrutinib and Its Dihydrodiol Metabolite in Patients with Lymphoid Malignancies - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Clinical Pharmacokinetics Année : 2020

Population Pharmacokinetics of Ibrutinib and Its Dihydrodiol Metabolite in Patients with Lymphoid Malignancies

Loïc Dupré

Résumé

Ibrutinib is used for the treatment of chronic lymphocytic leukemia and other lymphoid malignancies. The aim of this work is to develop a population pharmacokinetic model for ibrutinib and its dihydrodiol metabolite to quantify pharmacokinetic inter- and intra-individual variability, to evaluate the impact of several covariates on ibrutinib pharmacokinetic parameters, and to examine the relationship between exposure and clinical outcome. Patients treated with ibrutinib were included in the study and followed up for 2 years. Pharmacokinetic blood samples were taken from months 1 to 12 after inclusion. Ibrutinib and dihydrodiol-ibrutinib concentrations were assessed using ultra-performance liquid chromatography tandem mass spectrometry. A population pharmacokinetic model was developed using NONMEM version 7.4. A total of 89 patients and 1501 plasma concentrations were included in the pharmacokinetic analysis. The best model consisted in two compartments for each molecule. Absorption was described by a sequential zero first-order process and a lag time. Ibrutinib was either metabolised into dihydrodiol-ibrutinib or excreted through other elimination routes. A link between the dosing compartment and the dihydrodiol-ibrutinib central compartment was added to assess for high first-pass hepatic metabolism. Ibrutinib clearance had 67% and 47% inter- and intra-individual variability, respectively, while dihydrodiol-ibrutinib clearance had 51% and 26% inter- and intra-individual variability, respectively. Observed ibrutinib exposure is significantly higher in patients carrying one copy of the cytochrome P450 3A4*22 variant (1167 ng.h/mL vs 743 ng.h/mL, respectively, p = 0.024). However, no covariates with a clinically relevant effect on ibrutinib or dihydrodiol-ibrutinib exposure were identified in the PK model. An external evaluation of the model was performed. Clinical outcome was expressed as the continuation or discontinuation of ibrutinib therapy 1 year after treatment initiation. Patients who had treatment discontinuation because of toxicity had significantly higher ibrutinib area under the curve (p = 0.047). No association was found between cessation of therapy due to disease progression and ibrutinib area under the curve in patients with chronic lymphocytic leukemia. For the seven patients with mantle cell lymphoma studied, an association trend was observed between disease progression and low exposure to ibrutinib. We present the first population pharmacokinetic model describing ibrutinib and dihydrodiol-ibrutinib concentrations simultaneously. Large inter-individual variability and substantial intra-individual variability were estimated and could not be explained by any covariate. Higher plasma exposure to ibrutinib is associated with cessation of therapy due to the occurrence of adverse events within the first year of treatment. The association between disease progression and ibrutinib exposure in patients with mantle cell lymphoma should be further investigated
Fichier principal
Vignette du fichier
Gallais F 2020.pdf (1.6 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02989879 , version 1 (05-10-2021)

Identifiants

Citer

Fanny Gallais, Loic Ysebaert, Fabien Despas, Sandra de Barros, Loïc Dupré, et al.. Population Pharmacokinetics of Ibrutinib and Its Dihydrodiol Metabolite in Patients with Lymphoid Malignancies. Clinical Pharmacokinetics, 2020, 59 (9), pp.1171-1183. ⟨10.1007/s40262-020-00884-0⟩. ⟨hal-02989879⟩
61 Consultations
41 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More