Semiclassical resolvent estimates for Schrödinger matrix operators with eigenvalues crossing - Archive ouverte HAL Access content directly
Journal Articles Mathematical News / Mathematische Nachrichten Year : 2003

Semiclassical resolvent estimates for Schrödinger matrix operators with eigenvalues crossing

Thierry Jecko
  • Function : Author
  • PersonId : 1097391

Abstract

For semiclassical Schrödinger 2 × 2-matrix operators, the symbol of which has crossing eigenvalues, we investigate the semiclassical Mourre theory to derive bounds O(h −1) (h being the semiclassical parameter) for the boundary values of the resolvent, viewed as bounded operator on weighted spaces. Under the non-trapping condition on the eigenvalues of the symbol and under a condition on its matricial structure, we obtain the desired bounds for codimension one crossings. For codimension two crossings, we show that a geometrical condition at the crossing must hold to get the existence of a global escape function, required by the usual semiclassical Mourre theory.
Fichier principal
Vignette du fichier
croisement-01.pdf (259.59 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03217327 , version 1 (04-05-2021)

Identifiers

Cite

Thierry Jecko. Semiclassical resolvent estimates for Schrödinger matrix operators with eigenvalues crossing. Mathematical News / Mathematische Nachrichten, 2003, ⟨10.1002/mana.200310076⟩. ⟨hal-03217327⟩
30 View
64 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More