Structure of fine Selmer groups in abelian p-adic Lie extensions - CNRS - Centre national de la recherche scientifique Access content directly
Preprints, Working Papers, ... Year :

Structure of fine Selmer groups in abelian p-adic Lie extensions

Abstract

This paper studies fine Selmer groups of elliptic curves in abelian $p$-adic Lie extensions. A class of elliptic curves are provided where both the Selmer group and the fine Selmer group are trivial in the cyclotomic $\mathbb{Z}_p$-extension. The fine Selmer groups of elliptic curves with complex multiplication are shown to be pseudonull over the trivializing extension in some new cases. Finally, a relationship between the structure of the fine Selmer group for some CM elliptic curves and the Generalized Greenberg's Conjecture is clarified.
Fichier principal
Vignette du fichier
KunduNuccioSujatha.pdf (425.95 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03769801 , version 1 (05-09-2022)
hal-03769801 , version 2 (21-11-2022)
hal-03769801 , version 3 (16-01-2023)
hal-03769801 , version 4 (21-04-2023)

Licence

Attribution

Identifiers

Cite

Debanjana Kundu, Filippo Alberto Edoardo Nuccio Mortarino Majno Di Capriglio, Sujatha Ramdorai. Structure of fine Selmer groups in abelian p-adic Lie extensions. 2022. ⟨hal-03769801v4⟩
78 View
41 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More