Structure of fine Selmer groups in abelian p-adic Lie extensions - CNRS - Centre national de la recherche scientifique
Article Dans Une Revue Osaka Journal of Mathematics Année : 2024

Structure of fine Selmer groups in abelian p-adic Lie extensions

Résumé

This paper studies fine Selmer groups of elliptic curves in abelian $p$-adic Lie extensions. A class of elliptic curves are provided where both the Selmer group and the fine Selmer group are trivial in the cyclotomic $\mathbb{Z}_p$-extension. The fine Selmer groups of elliptic curves with complex multiplication are shown to be pseudonull over the trivializing extension in some new cases. Finally, a relationship between the structure of the fine Selmer group for some CM elliptic curves and the Generalized Greenberg's Conjecture is clarified.
Fichier principal
Vignette du fichier
KunduNuccioSujatha.pdf (425.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03769801 , version 1 (05-09-2022)
hal-03769801 , version 2 (21-11-2022)
hal-03769801 , version 3 (16-01-2023)
hal-03769801 , version 4 (21-04-2023)
hal-03769801 , version 5 (05-02-2024)

Licence

Identifiants

Citer

Debanjana Kundu, Filippo Alberto Edoardo Nuccio Mortarino Majno di Capriglio, Sujatha Ramdorai. Structure of fine Selmer groups in abelian p-adic Lie extensions. Osaka Journal of Mathematics, 2024, 61 (1). ⟨hal-03769801v4⟩
370 Consultations
153 Téléchargements

Altmetric

Partager

More