Exploring the pH dependence of an improved PETase - CNRS - Centre national de la recherche scientifique
Article Dans Une Revue Biophysical Journal Année : 2024

Exploring the pH dependence of an improved PETase

Résumé

Enzymatic recycling of plastic and especially of polyethylene terephthalate (PET) has shown great potential to reduce its negative impact on our society. PET hydrolases (PETases) have been optimized using rational design and machine learning, but the mechanistic details of the PET depolymerization process remain unclear. Belonging to the carboxylic-ester hydrolase family with a canonical Ser-His-Asp catalytic triad, their observed alkaline pH optimum is generally thought to be related to the protonation state of the catalytic His. Here, we explore this aspect in the context of LCCICCG, an optimized PETase, derived from the Leaf-branch Compost Cutinase (LCC) enzyme. We use NMR to identify the dominant tautomeric structure of the six histidines. Five show surprisingly low pKa values below 4.0 while the catalytic H242 in the active enzyme displays a pKa value that varies from 4.9 to 4.7 when temperatures increase from 30°C to 50°C. Whereas the hydrolytic activity of the enzyme towards a soluble substrate can be modeled by the corresponding protonation/deprotonation curve, an important discrepancy is found when the substrate is the solid plastic. This opens the way to further mechanistic understanding of the PETase activity, and underscores the importance of studying the enzyme at the liquid/solid interface

Mots clés

Domaines

Polymères Catalyse
Fichier principal
Vignette du fichier
Manuscript_210424.pdf (4.4 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04569437 , version 1 (06-05-2024)

Identifiants

Citer

Cyril Charlier, Sabine Gavalda, Jelena Grga, Laura Perrot, Valeria Gabrielli, et al.. Exploring the pH dependence of an improved PETase. Biophysical Journal, inPress, ⟨10.1016/j.bpj.2024.04.026⟩. ⟨hal-04569437⟩
54 Consultations
35 Téléchargements

Altmetric

Partager

More