Article Dans Une Revue Mathematical Models and Methods in Applied Sciences Année : 2025

Some mathematical models for flagellar activation mechanisms

Résumé

This paper focuses on studying a model for molecular motors responsible for the bending of the axoneme in the flagella of microorganisms. The model is a coupled system of partial differential equations inspired by Jülicher et al. or Camalet, incorporating two rows of molecular motors between microtubules filaments. Existence and uniqueness of a solution is proved, together with the presence of a supercritical Hopf bifurcation. Additionally, numerical simulations are provided to illustrate the theoretical results. A brief study on the generalization to N-rows is also included.

Fichier principal
Vignette du fichier
NLayers_1208_corrections_Arxiv (1).pdf (2.49 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04689234 , version 1 (10-09-2024)
hal-04689234 , version 2 (16-04-2025)

Licence

Identifiants

Citer

François Alouges, Irene Anello, Antonio Desimone, Aline Lefebvre-Lepot, Jessie Levillain. Some mathematical models for flagellar activation mechanisms. Mathematical Models and Methods in Applied Sciences, 2025, 35 (11), pp.2395-2424. ⟨10.1142/S0218202525500423⟩. ⟨hal-04689234v2⟩
493 Consultations
185 Téléchargements

Altmetric

Partager

  • More