Minimization of the first eigenvalue for the Lamé system - CNRS - Centre national de la recherche scientifique
Pré-Publication, Document De Travail Année : 2024

Minimization of the first eigenvalue for the Lamé system

Résumé

In this article, we address the problem of determining a domain in R^N that minimizes the first eigenvalue of the Lamé system under a volume constraint. We begin by establishing the existence of such an optimal domain within the class of quasi-open sets, showing that in the physically relevant dimensions N = 2 and 3, the optimal domain is indeed an open set. Additionally, we derive both first and second-order optimality conditions. Leveraging these conditions, we demonstrate that in two dimensions, the disk cannot be the optimal shape when the Poisson ratio is below a specific threshold, whereas above this value, it serves as a local minimizer. We also extend our analysis to show that the disk is nonoptimal for Poisson ratios ν satisfying ν ≤ 0.4.
Fichier principal
Vignette du fichier
Lambda_Lame_Vf.pdf (664.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04827021 , version 1 (09-12-2024)

Identifiants

  • HAL Id : hal-04827021 , version 1

Citer

Antoine Henrot, Antoine Lemenant, Yannick Privat. Minimization of the first eigenvalue for the Lamé system. 2024. ⟨hal-04827021⟩
0 Consultations
0 Téléchargements

Partager

More