Deep latent position model for node clustering in graphs - Laboratoire Jean-Alexandre Dieudonné Accéder directement au contenu
Communication Dans Un Congrès Année : 2022

Deep latent position model for node clustering in graphs


With the significant increase of interactions between individuals through numeric means, the clustering of vertex in graphs has become a fundamental approach for analysing large and complex networks. We propose here the deep latent position model (DeepLPM), an end-to-end clustering approach which combines the widely used latent position model (LPM) for network analysis with a graph convolutional network (GCN) encoding strategy. Thus, DeepLPM can automatically assign each node to its group without using any additional algorithms and better preserves the network topology. Numerical experiments on simulated data and an application on the Cora citation network are conducted to demonstrate its effectiveness and interest in performing unsupervised clustering tasks.
Fichier principal
Vignette du fichier
ESANN_DeepLPM.pdf (513.99 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03874698 , version 1 (28-11-2022)



Dingge Liang, Marco Corneli, Charles Bouveyron, Pierre Latouche. Deep latent position model for node clustering in graphs. ESANN 2022 - 30th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Oct 2022, Bruges, Belgium. ⟨10.14428/esann/2022.ES2022-30⟩. ⟨hal-03874698⟩
46 Consultations
28 Téléchargements



Gmail Facebook X LinkedIn More