Article Dans Une Revue IEEE Robotics and Automation Letters Année : 2025

Experimental Validation of Sensitivity-Aware Trajectory Planning for a Redundant Robotic Manipulator Under Payload Uncertainty

Résumé

In this paper, we experimentally validate the recent concepts of closed-loop state and input sensitivity in the context of robust manipulation control for a robot manipulator. Our objective is to assess how optimizing trajectories with respect to sensitivity metrics can enhance the closed-loop system's performance w.r.t. model uncertainties, such as those arising from payload variations during precise manipulation tasks. We conduct a series of experiments to validate our optimization approach across different trajectories, focusing primarily on evaluating the precision of the manipulator's end-effector at critical moments where high accuracy is essential. Our findings offer valuable insights into improving the closed-loop robustness of the robot's state and inputs against physical parametric uncertainties that could otherwise degrade the system's performance.
Fichier principal
Vignette du fichier
24-2225_03_MS.pdf (7.76 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04816507 , version 1 (03-12-2024)

Licence

Identifiants

Citer

Ali Srour, Antonio Franchi, Paolo Robuffo Giordano, Marco Cognetti. Experimental Validation of Sensitivity-Aware Trajectory Planning for a Redundant Robotic Manipulator Under Payload Uncertainty. IEEE Robotics and Automation Letters, 2025, 10 (2), pp.1561-1568. ⟨10.1109/LRA.2024.3519857⟩. ⟨hal-04816507⟩
60 Consultations
167 Téléchargements

Altmetric

Partager

More