Communication Dans Un Congrès Année : 2024

NeurIPS 2024 ML4CFD Competition: Harnessing Machine Learning for Computational Fluid Dynamics in Airfoil Design

Mouadh Yagoubi
  • Fonction : Auteur
David Danan
  • Fonction : Auteur
Milad Leyli-Abadi
  • Fonction : Auteur
Jean-Patrick Brunet
  • Fonction : Auteur
Maroua Gmati
  • Fonction : Auteur
Ahmed Mazari
  • Fonction : Auteur
Florent Bonnet
  • Fonction : Auteur
Paola Cinnella
  • Fonction : Auteur
Patrick Gallinari
  • Fonction : Auteur
Marc Schoenauer
  • Fonction : Auteur

Résumé

The integration of machine learning (ML) techniques for addressing intricate physics problems is increasingly recognized as a promising avenue for expediting simulations. However, assessing ML-derived physical models poses a significant challenge for their adoption within industrial contexts. This competition is designed to promote the development of innovative ML approaches for tackling physical challenges, leveraging our recently introduced unified evaluation framework known as Learning Industrial Physical Simulations (LIPS). Building upon the preliminary edition held from November 2023 to March 2024 1 , this iteration centers on a task fundamental to a well-established physical application: airfoil design simulation, utilizing our proposed AirfRANS dataset. The competition evaluates solutions based on various criteria encompassing ML accuracy, computational efficiency, Out-Of-Distribution performance, and adherence to physical principles. Notably, this competition represents a pioneering effort in exploring ML-driven surrogate methods aimed at optimizing the trade-off between computational efficiency and accuracy in physical simulations. Hosted on the Codabench platform, the competition offers online training and evaluation for all participating solutions
Fichier principal
Vignette du fichier
21_NeurIPS_2024_ML4CFD_Competi.pdf (12.73 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04869170 , version 1 (06-01-2025)

Identifiants

  • HAL Id : hal-04869170 , version 1

Citer

Mouadh Yagoubi, David Danan, Milad Leyli-Abadi, Jean-Patrick Brunet, Maroua Gmati, et al.. NeurIPS 2024 ML4CFD Competition: Harnessing Machine Learning for Computational Fluid Dynamics in Airfoil Design. NeurIPS 2024, Dec 2024, Vancouver, Canada. ⟨hal-04869170⟩

Collections

IRT-SYSTEMX
0 Consultations
0 Téléchargements

Partager

More