Ligand-Enabled Oxidative Fluorination of Gold(I) and Light-Induced Aryl–F Coupling at Gold(III)
Résumé
MeDalphos Au(I) complexes featuring aryl, alkynyl, and alkyl groups readily react with electrophilic fluorinating reagents such as N-fluorobenzenesulfonimide and Selectfluor. The ensuing [(MeDalphos)Au(R)F]+ complexes have been isolated and characterized by multinuclear NMR spectroscopy as well as X-ray diffraction. They adopt a square-planar contra-thermodynamic structure, with F trans to N. DFT/IBO calculations show that the N lone pair of MeDalphos assists and directs the transfer of F+ to gold. The [(MeDalphos)Au(Ar)F]+ (Ar = Mes, 2,6-F2Ph) complexes smoothly engage in C-C cross-coupling with PhCCSiMe3 and Me3SiCN, providing direct evidence for the oxidative fluorination/transmetalation/reductive elimination sequence proposed for F+-promoted gold-catalyzed transformations. Moreover, direct reductive elimination to forge a C-F bond at Au(III) was explored and substantiated. Thermal means proved unsuccessful, leading mostly to decomposition, but irradiation with UV-visible light enabled efficient promotion of aryl-F coupling (up to 90% yield). The light-induced reductive elimination proceeds under mild conditions; it works even with the electron-deprived 2,6-difluorophenyl group, and it is not limited to the contra-thermodynamic form of the aryl Au(III) fluoride complexes.
Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
licence |