Article Dans Une Revue (Article De Synthèse) Proceedings of the National Academy of Sciences of the United States of America Année : 2024

Modeling the velocity of evolving lineages and predicting dispersal patterns

Gabriel Hassler
Denis Fargette
Marc Suchard

Résumé

Accurate estimation of the dispersal velocity or speed of evolving organisms is no mean feat. In fact, existing probabilistic models in phylogeography or spatial population genetics generally do not provide an adequate framework to define velocity in a relevant manner. For instance, the very concept of instantaneous speed simply does not exist under one of the most popular approaches that models the evolution of spatial coordinates as Brownian trajectories running along a phylogeny. Here, we introduce a family of models—the so-called Phylogenetic Integrated Velocity (PIV) models—that use Gaussian processes to explicitly model the velocity of evolving lineages instead of focusing on the fluctuation of spatial coordinates over time. We describe the properties of these models and show an increased accuracy of velocity estimates compared to previous approaches. Analyses of West Nile virus data in the United States indicate that PIV models provide sensible predictions of the dispersal of evolving pathogens at a one-year time horizon. These results demonstrate the feasibility and relevance of predictive phylogeography in monitoring epidemics in time and space.
Fichier principal
Vignette du fichier
2024.06.06.597755v2.full.pdf (25.45 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

lirmm-04795029 , version 1 (09-01-2025)

Licence

Identifiants

Citer

Paul Bastide, Pauline Rocu, Johannes Wirtz, Gabriel Hassler, François Chevenet, et al.. Modeling the velocity of evolving lineages and predicting dispersal patterns. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121 (47), pp.e2411582121. ⟨10.1073/pnas.2411582121⟩. ⟨lirmm-04795029⟩
31 Consultations
0 Téléchargements

Altmetric

Partager

More