Resiliency Approaches in Convolutional, Photonic, and Spiking Neural Networks - Techniques of Informatics and Microelectronics for integrated systems Architecture
Communication Dans Un Congrès Année : 2024

Resiliency Approaches in Convolutional, Photonic, and Spiking Neural Networks

Résumé

This study presents a comparative examination of state-of-the-art resiliency approaches of Convolutional, Spiking, and Photonic neural networks (CNNs, SNNs, PNNs), their fault and error models, and the main fault tolerance techniques.

Fichier principal
Vignette du fichier
LATS24_SpecialSession.pdf (999.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04564652 , version 1 (30-04-2024)

Licence

Identifiants

  • HAL Id : hal-04564652 , version 1

Citer

Alberto Bosio, Mauricio Gomes, Fabio Pavanello, Antonio Porsia, Annachiara Ruospo, et al.. Resiliency Approaches in Convolutional, Photonic, and Spiking Neural Networks. IEEE Latin American Test Symposium (LATS 2024), Apr 2024, Maceio, Brazil. ⟨hal-04564652⟩
75 Consultations
108 Téléchargements

Partager

More