Energy levels and THz optical properties in Graphene Quantum Dots
Résumé
Owing to their energy level splitting in the meV range, large graphene quantum dots (size ~100 nm) are very attractive candidates for THz technology. Whereas their electronic properties have been widely studied by transport measurements, only very few works have been focused on their interaction with THz radiation. Here, we report a theoretical and experimental investigation of the optical properties at THz frequencies of large graphene quantum dots. Using a tight-binding modeling, we show the existence of spatially extended mixed-states that should couple efficiently to THz photons. Furthermore, we experimentally demonstrate THz optical absorption of an array of circular 75 nm-diameter graphene quantum dots at 4K and 300K.