A Computational Model for the PLP-Dependent Enzyme Methionine γ-Lyase - CNRS - Centre national de la recherche scientifique
Article Dans Une Revue Frontiers in Molecular Biosciences Année : 2022

A Computational Model for the PLP-Dependent Enzyme Methionine γ-Lyase

Résumé

Pyridoxal-5′-phosphate (PLP) is a cofactor in the reactions of over 160 enzymes, several of which are implicated in diseases. Methionine γ-lyase (MGL) is of interest as a therapeutic protein for cancer treatment. It binds PLP covalently through a Schiff base linkage and digests methionine, whose depletion is damaging for cancer cells but not normal cells. To improve MGL activity, it is important to understand and engineer its PLP binding. We develop a simulation model for MGL, starting with force field parameters for PLP in four main states: two phosphate protonation states and two tautomeric states, keto or enol for the Schiff base moiety. We used the force field to simulate MGL complexes with each form, and showed that those with a fullydeprotonated PLP phosphate, especially keto, led to the best agreement with MGL structures in the PDB. We then confirmed this result through alchemical free energy simulations that compared the keto and enol forms, confirming a moderate keto preference, and the fully-deprotonated and singly-protonated phosphate forms. Extensive simulations were needed to adequately sample conformational space, and care was needed to extrapolate the protonation free energy to the thermodynamic limit of a macroscopic, dilute protein solution. The computed phosphate pK a was 5.7, confirming that the deprotonated, −2 form is predominant. The PLP force field and the simulation methods can be applied to all PLP enzymes and used, as here, to reveal fine details of structure and dynamics in the active site.
Fichier principal
Vignette du fichier
fmb22.pdf (2.45 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03835739 , version 1 (01-11-2022)

Licence

Identifiants

Citer

Xingyu Chen, Pierre Briozzo, David Machover, Thomas Simonson. A Computational Model for the PLP-Dependent Enzyme Methionine γ-Lyase. Frontiers in Molecular Biosciences, 2022, 9, pp.886358. ⟨10.3389/fmolb.2022.886358⟩. ⟨hal-03835739⟩
298 Consultations
53 Téléchargements

Altmetric

Partager

More