Visualizing In‐Plane Junctions in Nitrogen‐Doped Graphene
Abstract
Controlling the spatial distribution of dopants in graphene is the gateway to the realization of graphene-based electronic components. Here, we show that a submonolayer of self-assembled physisorbed molecules can be used as a resist during a post-synthesis nitrogen doping process to realize a nanopatterning of nitrogen dopants in graphene. The resulting formation of domains with different nitrogen concentrations allows obtaining nn' and pn junctions in graphene. We use scanning tunneling microscopy to measure the electronic properties of the junctions at the atomic scale and reveal their intrinsic width that is found to be around 7 nm corresponding to a sharp junction regime.
Origin : Files produced by the author(s)