A birational involution - CNRS - Centre national de la recherche scientifique
Pré-Publication, Document De Travail Année : 2022

A birational involution

Résumé

Given a general K3 surface S of degree 18, lattice theoretic considerations allow to predict the existence of an anti-symplectic birational involution of the Hilbert cube S^[3]. We describe this involution in terms of the Mukai model of S, with the help of the famous transitive action of the exceptional group G_2(R) on the six-dimensional sphere. We make a connection with Homological Projective Duality by showing that the indeterminacy locus of the involution is birational to a P^2-bundle over the dual K3 surface of degree two.
Fichier principal
Vignette du fichier
main.pdf (377.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03860819 , version 1 (21-11-2022)

Identifiants

Citer

Pietro Beri, Laurent Manivel. A birational involution. 2022. ⟨hal-03860819⟩
40 Consultations
51 Téléchargements

Altmetric

Partager

More