Multi-output machine learning models for kinetic data evaluation : A Fischer–Tropsch synthesis case study - Archive ouverte HAL Access content directly
Journal Articles Chemical Engineering Journal Year : 2022

Multi-output machine learning models for kinetic data evaluation : A Fischer–Tropsch synthesis case study

Fichier principal
Vignette du fichier
A. Chakkingal et al manuscript_CEJ.pdf (6.58 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03863277 , version 1 (25-11-2022)

Identifiers

Cite

Anoop Chakkingal, Pieter Janssens, Jeroen Poissonnier, Mirella Virginie, Andrei Khodakov, et al.. Multi-output machine learning models for kinetic data evaluation : A Fischer–Tropsch synthesis case study. Chemical Engineering Journal, 2022, 446, pp.137186. ⟨10.1016/j.cej.2022.137186⟩. ⟨hal-03863277⟩
14 View
15 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More