Partial quenching of electronic Raman scattering in double-wall carbon nanotubes by interlayer coupling - CNRS - Centre national de la recherche scientifique
Journal Articles Carbon Year : 2023

Partial quenching of electronic Raman scattering in double-wall carbon nanotubes by interlayer coupling

Maksiem Erkens
Jean-Louis Sauvajol
  • Function : Author
  • PersonId : 1005375
  • IdRef : 079125352
Wim Wenseleers
Sofie Cambré
Matthieu Paillet

Abstract

Measuring electronic Raman scattering (ERS) has become an efficient method for structural characterization of metallic single-wall carbon nanotubes (SWCNT). However, applying this method to other types of SWCNT-based structures, e.g., those with strong van der Waals (VDW) coupling, is currently not well studied. In this work, we combine electron diffraction, Rayleigh and Raman spectroscopies to investigate the ERS process near 36 metallic transitions in 21 individual double-wall carbon nanotubes (DWCNTs) with all types of electronic configurations. We observe the partial suppression of ERS intensity in DWCNTs compared to SWCNTs and mainly attribute it to the effect of dielectric screening of Coulomb interactions. We probe ultra-pure macroscopic multi-chirality DWCNT solutions and identify the role of inhomogeneous broadening in observing ERS peaks in Raman spectra. Based on the experimental findings, we propose an adapted method for the structural identification of DWCNT samples from the ERS data. The obtained results can be generalized to the characterization of the emerging 1D VDW heterostructures based on metallic SWCNTs.
Fichier principal
Vignette du fichier
Levshov_DWCNT-ERS_Carbon_203_2023_AuthorFile.pdf (7.89 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03929855 , version 1 (12-01-2023)

Identifiers

Cite

Dmitry Levshov, Marina Avramenko, Maksiem Erkens, Huy-Nam Tran, Thi Thanh Cao, et al.. Partial quenching of electronic Raman scattering in double-wall carbon nanotubes by interlayer coupling. Carbon, 2023, 203, pp.801-812. ⟨10.1016/J.CARBON.2022.12.003⟩. ⟨hal-03929855⟩
69 View
96 Download

Altmetric

Share

More