On the computation of modular forms on noncongruence subgroups
Abstract
We present two approaches that can be used to compute modular forms on noncongruence subgroups. The first approach uses Hejhal's method for which we improve the arbitrary precision solving techniques so that the algorithm becomes about up to two orders of magnitude faster in practical computations. This allows us to obtain high precision numerical estimates of the Fourier coefficients from which the algebraic expressions can be identified using the LLL algorithm. The second approach is restricted to genus zero subgroups and uses efficient methods to compute the Belyi map from which the modular forms can be constructed.
Domains
Number Theory [math.NT]Origin | Files produced by the author(s) |
---|