The Impact of Gulf Stream Frontal Eddies on Ecology and Biogeochemistry near Cape Hatteras
Résumé
Ocean physics and biology can interact in myriad and complex ways. Eddies, features found at many scales in the ocean, can drive substantial changes in physical and biogeochemical fields with major implications for marine ecosystems. Mesoscale eddies are challenging to model and difficult to observe synoptically at sea due to their fine-scale variability yet broad extent. In this work we observed a frontal eddy just north of Cape Hatteras via an intensive hydrographic, biogeochemical, and optical sampling campaign. Frontal eddies occur in western boundary currents around the globe and there are major gaps in our understanding of their ecosystem impacts. In the Gulf Stream, frontal eddies have been studied in the South Atlantic Bight, where they are generally assumed to shear apart passing Cape Hatteras. However, we found that the observed frontal eddy had different physical properties and phytoplankton community composition from adjacent water masses, in addition to continued cyclonic rotation. In this work we first synthesize the overall ecological impacts of frontal eddies in a simple conceptual model. This conceptual model led to the hypothesis that frontal eddies could be well timed to supply zooplankton to secondary consumers off Cape Hatteras where there is a notably high concentration and diversity of top predators. Towards testing this hypothesis and our conceptual model we report on the biogeochemical state of this particular eddy connecting physical and biological dynamics, analyze how it differs from Gulf Stream and shelf waters even in “death”, and refine our initial model with this new data
Origine | Fichiers produits par l'(les) auteur(s) |
---|