Mo2CTx MXene supported nickel-iron alloy: an efficient and stable heterostructure to boost oxygen evolution reaction - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue 2D Materials Année : 2023

Mo2CTx MXene supported nickel-iron alloy: an efficient and stable heterostructure to boost oxygen evolution reaction

Résumé

A polyol-assisted solvothermal route is used to synthesize Ni x Fe y nanoalloys supported on a highly electron conductive 2D transition metal Mo 2 CT x MXene. Structural, morphological and chemical characteristics of the materials are determined using several physicochemical techniques. The MXene support allows not only the formation of a nanostructured metallic Ni x Fe y nanoalloys, but also favors the interfacial charge transfer for the OER. The Ni x Fe y @Mo 2 CT x material with a Ni/Fe ratio of 2.66 leads to the outstanding activity for the OER with an amazingly low Tafel slope value of 34 mV dec-1 and a current density of 10 mA.cm-2 at a potential of only 1.50 V vs. RHE. In situ Raman experiments show that β-NiOOH formed by oxidation of the nanoalloys under positive scan, likely containing a very small amount of Fe, is the active phase for the OER. This material exhibits also an excellent stability over 168 h in a 5 M KOH electrolyte. TEM-EELS analyses after 100 voltammetric cycles between 0.2 to 2 1.55 V vs. RHE evidence for the first time that the MXene support is not fully oxidized in the first cycle. Also, oxyhydroxide layer formed in the OER potential region at the surface of the Ni x Fe y nanoparticles can be reversibly reduced.
Fichier principal
Vignette du fichier
revised-article.pdf (1.55 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04010894 , version 1 (02-03-2023)

Identifiants

Citer

Lola Loupias, Roald Boulé, Cláudia Morais, Vincent Mauchamp, Nadia Guignard, et al.. Mo2CTx MXene supported nickel-iron alloy: an efficient and stable heterostructure to boost oxygen evolution reaction. 2D Materials, 2023, 10 (2), pp.024005. ⟨10.1088/2053-1583/acbfcb⟩. ⟨hal-04010894⟩
36 Consultations
160 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More