Dynamic Probabilistic Input Output Automata
Résumé
We present probabilistic dynamic I/O automata, a framework to model dynamic probabilistic systems. Our work extends dynamic I/O Automata formalism of Attie & Lynch [Paul C. Attie and Nancy A. Lynch, 2016] to the probabilistic setting. The original dynamic I/O Automata formalism included operators for parallel composition, action hiding, action renaming, automaton creation, and behavioral sub-typing by means of trace inclusion. They can model mobility by using signature modification. They are also hierarchical: a dynamically changing system of interacting automata is itself modeled as a single automaton. Our work extends all these features to the probabilistic setting. Furthermore, we prove necessary and sufficient conditions to obtain the monotonicity of automata creation/destruction with implementation preorder. Our construction uses a novel proof technique based on homomorphism that can be of independent interest. Our work lays down the foundations for extending composable secure-emulation of Canetti et al. [Ran Canetti et al., 2007] to dynamic settings, an important tool towards the formal verification of protocols combining probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains, secure distributed computation, cybersecure distributed protocols, etc).