Uniform Asymptotic Approximations for the Phase Plane Trajectories of the SIR Model with Vital Dynamics - CNRS - Centre national de la recherche scientifique
Article Dans Une Revue SIAM Journal on Applied Mathematics Année : 2024

Uniform Asymptotic Approximations for the Phase Plane Trajectories of the SIR Model with Vital Dynamics

Résumé

We derive accurate, closed-form analytical approximations for the phase-plane trajectories of the standard susceptible-infectious-removed (SIR) epidemic model, including host births and deaths, giving a complete description of the transient dynamics. Our approximations for the SIR ordinary differential equations also allow us to provide convenient, accurate analytical approximations for the associated Poincaré map, and the minimum and maximum susceptible and infectious host densities in each epidemic wave. Our analysis involves matching asymptotic expansions across branch cuts of the Lambert W function.
Fichier non déposé

Dates et versions

hal-04178969 , version 1 (08-08-2023)
hal-04178969 , version 2 (18-11-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Todd L Parsons, David J D Earn. Uniform Asymptotic Approximations for the Phase Plane Trajectories of the SIR Model with Vital Dynamics. SIAM Journal on Applied Mathematics, 2024, 84 (4), pp.1580-1608. ⟨10.1137/23M1576050⟩. ⟨hal-04178969v2⟩
163 Consultations
113 Téléchargements

Altmetric

Partager

More