Programmable frequency-bin quantum states in a nano-engineered silicon device - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Nature Communications Année : 2023

Programmable frequency-bin quantum states in a nano-engineered silicon device

Marco Clementi
Federico Andrea Sabattoli
  • Fonction : Auteur
Massimo Borghi
  • Fonction : Auteur
Linda Gianini
  • Fonction : Auteur
Noemi Tagliavacche
Houssein El Dirani
  • Fonction : Auteur
Laurene Youssef
Nicola Bergamasco
  • Fonction : Auteur
J. Sipe
  • Fonction : Auteur
Marco Liscidini
  • Fonction : Auteur
Corrado Sciancalepore
  • Fonction : Auteur
Matteo Galli
Daniele Bajoni

Résumé

Abstract Photonic qubits should be controllable on-chip and noise-tolerant when transmitted over optical networks for practical applications. Furthermore, qubit sources should be programmable and have high brightness to be useful for quantum algorithms and grant resilience to losses. However, widespread encoding schemes only combine at most two of these properties. Here, we overcome this hurdle by demonstrating a programmable silicon nano-photonic chip generating frequency-bin entangled photons, an encoding scheme compatible with long-range transmission over optical links. The emitted quantum states can be manipulated using existing telecommunication components, including active devices that can be integrated in silicon photonics. As a demonstration, we show our chip can be programmed to generate the four computational basis states, and the four maximally-entangled Bell states, of a two-qubits system. Our device combines all the key properties of on-chip state reconfigurability and dense integration, while ensuring high brightness, fidelity, and purity.

Dates et versions

hal-04216922 , version 1 (25-09-2023)

Identifiants

Citer

Marco Clementi, Federico Andrea Sabattoli, Massimo Borghi, Linda Gianini, Noemi Tagliavacche, et al.. Programmable frequency-bin quantum states in a nano-engineered silicon device. Nature Communications, 2023, 14 (1), pp.176. ⟨10.1038/s41467-022-35773-6⟩. ⟨hal-04216922⟩
17 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More