Article Dans Une Revue Journal of Mathematical Physics Année : 2024

Causal completion of a globally hyperbolic conformally flat spacetime

Résumé

In [6], Geroch, Kronheimer and Penrose introduced a way to attach ideal points to a spacetime M , defining the causal completion of M. They established that this is a topological space which is Hausdorff when M is globally hyperbolic. In this paper, we prove that if, in addition, M is simply-connected and conformally flat, its causal completion is a topological manifold with boundary homeomorphic to S × [0, 1] where S is a Cauchy hypersurface of M. We also introduce three remarkable families of globally hyperbolic conformally flat spacetimes and provide a description of their causal completions.
Fichier principal
Vignette du fichier
Causal completion again.pdf (457.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04331774 , version 1 (08-12-2023)

Identifiants

Citer

Rym Smaï. Causal completion of a globally hyperbolic conformally flat spacetime. Journal of Mathematical Physics, 2024, 65 (10), pp.102501. ⟨10.1063/5.0204994⟩. ⟨hal-04331774⟩
27 Consultations
28 Téléchargements

Altmetric

Partager

More