Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids - CNRS - Centre national de la recherche scientifique
Communication Dans Un Congrès Année : 2024

Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids

Résumé

We study monoidal transducers, transition systems arising as deterministic automata whose transitions also produce outputs in an arbitrary monoid, for instance allowing outputs to commute or to cancel out. We use the categorical framework for minimization and learning of Colcombet, Petrişan and Stabile to recover the notion of minimal transducer recognizing a language, and give necessary and sufficient conditions on the output monoid for this minimal transducer to exist and be unique (up to isomorphism). The categorical framework then provides an abstract algorithm for learning it using membership and equivalence queries, and we discuss practical aspects of this algorithm’s implementation.
Fichier principal
Vignette du fichier
LIPIcs.CSL.2024.11.pdf (913.14 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04488665 , version 1 (04-03-2024)

Licence

Identifiants

Citer

Quentin Aristote. Active Learning of Deterministic Transducers with Outputs in Arbitrary Monoids. 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024), Feb 2024, Naples, Italy. pp.11:1-11:20, ⟨10.4230/LIPIcs.CSL.2024.11⟩. ⟨hal-04488665⟩
19 Consultations
27 Téléchargements

Altmetric

Partager

More