Combinatorics of Serre weights in the potentially Barsotti-Tate setting - CNRS - Centre national de la recherche scientifique
Pré-Publication, Document De Travail Année : 2021

Combinatorics of Serre weights in the potentially Barsotti-Tate setting

Résumé

Let $F$ be a finite unramified extension of $\mathbb{Q}_p$ and $\bar\rho$ be a absolutely irreducible mod~$p$ $2$-dimensional representation of the absolute Galois group of $F$. Let also $t$ be a tame inertial type of $F$. We relate the Kisin variety associated to these data to the set of Serre weights $\mathcal{D}(t,\bar\rho) = \mathcal{D}(t) \cap \mathcal{D}(\bar\rho)$. We prove that the Kisin variety enriched with its canonical embedding into $(\mathbb{P}^1)^f$ and its shape stratification are enough to determine the cardinality of $\mathcal{D}(t,\bar\rho)$. Moreover, we prove that this dependance is nondecreasing (the smaller is the Kisin variety, the smaller is the number of common Serre weights) and compatible with products (if the Kisin variety splits as a product, so does the number of weights). These results provide new evidences towards the conjectures in our previous paper.
Fichier principal
Vignette du fichier
combiSerre.pdf (623.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03221168 , version 1 (07-05-2021)
hal-03221168 , version 2 (10-05-2021)
hal-03221168 , version 3 (05-11-2021)

Identifiants

Citer

Xavier Caruso, Agnès David, Ariane Mézard. Combinatorics of Serre weights in the potentially Barsotti-Tate setting. 2021. ⟨hal-03221168v2⟩
343 Consultations
127 Téléchargements

Altmetric

Partager

More