Combinatorics of Serre weights in the potentially Barsotti-Tate setting - CNRS - Centre national de la recherche scientifique
Article Dans Une Revue Moscow Journal of Combinatorics and Number Theory Année : 2023

Combinatorics of Serre weights in the potentially Barsotti-Tate setting

Résumé

Let $F$ be a finite unramified extension of $\mathbb Q_p$ and $\bar\rho$ be an absolutely irreducible mod~$p$ $2$-dimensional representation of the absolute Galois group of $F$. Let $t$ be a tame inertial type of $F$. We conjecture that the deformation space parametrizing the potentially Barsotti--Tate liftings of $\bar\rho$ having type $t$ depends only on the Kisin variety attached to the situation, enriched with its canonical embedding into $(\mathbb P^1)^f$ and its shape stratification. We give evidences towards this conjecture by proving that the Kisin variety determines the cardinality of the set of common Serre weights $D(t,\bar\rho) = D(t) \cap D(\bar\rho)$. Besides, we prove that this dependance is nondecreasing (the smaller is the Kisin variety, the smaller is the number of common Serre weights) and compatible with products (if the Kisin variety splits as a product, so does the number of weights).
Fichier principal
Vignette du fichier
combiSerre-v2.pdf (619.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03221168 , version 1 (07-05-2021)
hal-03221168 , version 2 (10-05-2021)
hal-03221168 , version 3 (05-11-2021)

Licence

Identifiants

Citer

Xavier Caruso, Agnès David, Ariane Mézard. Combinatorics of Serre weights in the potentially Barsotti-Tate setting. Moscow Journal of Combinatorics and Number Theory, 2023, 12 (1), pp.1 - 56. ⟨10.2140/moscow.2023.12.1⟩. ⟨hal-03221168v3⟩
343 Consultations
127 Téléchargements

Altmetric

Partager

More