Extensions of dissipative and symmetric operators - CNRS - Centre national de la recherche scientifique Access content directly
Journal Articles Semigroup Forum Year : 2023

Extensions of dissipative and symmetric operators

Abstract

Given a densely defined skew-symmetric operators A 0 on a real or complex Hilbert space V , we parametrize all m-dissipative extensions in terms of contractions Φ : H-→ H + , where Hand H + are Hilbert spaces associated with a boundary quadruple. Such an extension generates a unitary C 0-group if and only if Φ is a unitary operator. As corollary we obtain the parametrization of all selfadjoint extensions of a symmetric operator by unitary operators from Hto H +. Our results extend the theory of boundary triples initiated by von Neumann and developed by V. I. and M. L. Gorbachuk, J. Behrndt and M. Langer, S. A. Wegner and many others, in the sense that a boundary quadruple always exists (even if the defect indices are different in the symmetric case).
Fichier principal
Vignette du fichier
RDV3-31dec_hal.pdf (247.57 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03746751 , version 1 (05-08-2022)
hal-03746751 , version 2 (31-12-2022)

Identifiers

Cite

Wolfgang Arendt, Isabelle Chalendar, Robert Eymard. Extensions of dissipative and symmetric operators. Semigroup Forum, 2023, ⟨10.1007/s00233-023-10338-1⟩. ⟨hal-03746751v2⟩
80 View
42 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More