Exciton Coupling in Redox‐Active Salen based Self‐Assembled Metallacycles
Résumé
The incorporation of a redox-active nickel salen complex into supramolecular structures was explored via coordination-driven self-assembly with homobimetallic ruthenium complexes (bridged by oxalato or 5,8-dihydroxy-1,4-naphthoquinato ligands). The self-assembly resulted in the formation of a discrete rectangle using the oxalato complex and either a rectangle or a catenane employing the larger naphthoquinonato complex. The formation of the interlocked self-assembly was determined to be solvent and concentration dependent. The electronic structure and stability of the oxidized metallacycles was probed using electrochemical experiments, UV-Vis-NIR absorption, EPR spectroscopy and DFT calculations, confirming ligand radical formation. Exciton coupling of the intense near-infrared (NIR) ligand radical intervalence charge transfer (IVCT) bands provided further confirmation of the geometric and electronic structures in solution.