The algebra of binary trees is affine complete - CNRS - Centre national de la recherche scientifique
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2021

The algebra of binary trees is affine complete

Résumé

A function on an algebra is congruence preserving if, for any congruence, it maps pairs of congruent elements onto pairs of congruent elements. We show that on the algebra of binary trees whose leaves are labeled by letters of an alphabet containing at least three letters, a function is congruence preserving if and only if it is a polynomial function, thus exhibiting the first example of a non commutative and non associative affine complete algebra.

Mots clés

Fichier principal
Vignette du fichier
AbAffineBz-final.pdf (261.71 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03774317 , version 1 (10-09-2022)

Identifiants

Citer

André Arnold, Patrick Cégielski, Serge Grigorieff, Irène Guessarian. The algebra of binary trees is affine complete. Discrete Mathematics and Theoretical Computer Science, 2021, 23 (2), ⟨10.46298/dmtcs.6890⟩. ⟨hal-03774317⟩
35 Consultations
44 Téléchargements

Altmetric

Partager

More