Performance of a Markovian neural network versus dynamic programming on a fishing control problem - CNRS - Centre national de la recherche scientifique
Article Dans Une Revue Probability, Uncertainty and Quantitative Risk Année : 2022

Performance of a Markovian neural network versus dynamic programming on a fishing control problem

Mathieu Laurière
  • Fonction : Auteur
  • PersonId : 955372
Olivier Pironneau
  • Fonction : Auteur
  • PersonId : 958019

Résumé

Fishing quotas are unpleasant but efficient to control the productivity of a fishing site. A popular model has a stochastic differential equation for the biomass on which a stochastic dynamic programming or a Hamilton-Jacobi-Bellman algorithm can be used to find the stochastic control-the fishing quota. We compare the solutions obtained by dynamic programming against those obtained with a neural network which preserves the Markov property of the solution. The method is extended to a similar multi species model to check its robustness in high dimension.
Fichier principal
Vignette du fichier
2109.06856.pdf (1.91 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03891220 , version 1 (09-12-2022)

Identifiants

Citer

Mathieu Laurière, Gilles Pagès, Olivier Pironneau. Performance of a Markovian neural network versus dynamic programming on a fishing control problem. Probability, Uncertainty and Quantitative Risk, In press, ⟨10.48550/arXiv.2109.06856⟩. ⟨hal-03891220⟩
15 Consultations
17 Téléchargements

Altmetric

Partager

More