Matrices of linear forms of constant rank from vector bundles on projective spaces - CNRS - Centre national de la recherche scientifique
Article Dans Une Revue Advances in Mathematics Année : 2024

Matrices of linear forms of constant rank from vector bundles on projective spaces

Rosa Miró-Roig
  • Fonction : Auteur
  • PersonId : 1246813

Résumé

We consider the problem of constructing matrices of linear forms of constant rank by focusing on the associated vector bundles on projective spaces. Important examples are given by the classical Steiner bundles, as well as some special (duals of) syzygy bundles that we call Drézet bundles. Using the classification of globally generated vector bundles with small first Chern class on projective spaces, we are able to describe completely the indecomposable matrices of constant rank up to six; some of them come from rigid homogeneous vector bundles, some other from Drézet bundles related either to plane quartics or to instanton bundles on the three-dimensional projective space.
Fichier principal
Vignette du fichier
main.pdf (318.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04066797 , version 1 (12-04-2023)

Identifiants

Citer

Laurent Manivel, Rosa Miró-Roig. Matrices of linear forms of constant rank from vector bundles on projective spaces. Advances in Mathematics, 2024, 436, pp.109408. ⟨10.1016/j.aim.2023.109408⟩. ⟨hal-04066797⟩
44 Consultations
98 Téléchargements

Altmetric

Partager

More