Curvature properties and Shafarevich conjecture for toroidal compactifications of ball quotients - CNRS - Centre national de la recherche scientifique
Pré-Publication, Document De Travail Année : 2023

Curvature properties and Shafarevich conjecture for toroidal compactifications of ball quotients

Propriétés de courbure et conjecture de Shafarevich pour les compactifications toroidales de quotients de la boule

William Sarem
  • Fonction : Auteur

Résumé

We study toroidal compactifications of finite volume complex hyperbolic manifolds. We obtain results on the existence or nonexistence of K\"ahler metrics satisfying certain nonpositive curvature properties on these compactifications. Starting from quotients of complex hyperbolic space by deep enough non-uniform arithmetic lattices, we also verify the Shafarevich conjecture for their compactifications, by showing that their universal covers are Stein.
Fichier principal
Vignette du fichier
Curvature properties and Shafarevich conjecture for toroidal compactifications of ball quotients.pdf (401.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04210381 , version 1 (18-09-2023)

Identifiants

Citer

William Sarem. Curvature properties and Shafarevich conjecture for toroidal compactifications of ball quotients. 2023. ⟨hal-04210381⟩
30 Consultations
46 Téléchargements

Altmetric

Partager

More