Learning to Guide Local Feature Matches - CNRS - Centre national de la recherche scientifique
Communication Dans Un Congrès Année : 2021

Learning to Guide Local Feature Matches

Résumé

We tackle the problem of finding accurate and robust keypoint correspondences between images. We propose a learning-based approach to guide local feature matches via a learned approximate image matching. Our approach can boost the results of SIFT to a level similar to state-of-theart deep descriptors, such as Superpoint, ContextDesc, or D2-Net and can improve performance for these descriptors. We introduce and study different levels of supervision to learn coarse correspondences. In particular, we show that weak supervision from epipolar geometry leads to performances higher than the stronger but more biased point level supervision and is a clear improvement over weak image level supervision. We demonstrate the benefits of our approach in a variety of conditions by evaluating our guided keypoint correspondences for localization of internet images on the YFCC100M dataset and indoor images on the SUN3D dataset, for robust localization on the Aachen daynight benchmark and for 3D reconstruction in challenging conditions using the LTLL historical image data.
Fichier principal
Vignette du fichier
Francois_2019.pdf (2.57 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04315572 , version 1 (30-11-2023)

Identifiants

Citer

Francois Darmon, Mathieu Aubry, Pascal Monasse. Learning to Guide Local Feature Matches. 2020 International Conference on 3D Vision (3DV), Nov 2020, Fukuoka, Japan. pp.1127-1136, ⟨10.1109/3DV50981.2020.00123⟩. ⟨hal-04315572⟩
37 Consultations
10 Téléchargements

Altmetric

Partager

More