Article Dans Une Revue Proceedings of the London Mathematical Society Année : 2024

Representations of shifted quantum affine algebras and cluster algebras I. The simply-laced case

Christof Geiss
  • Fonction : Auteur
Bernard Leclerc
  • Fonction : Auteur

Résumé

We introduce a family of cluster algebras of infinite rank associated with root systems of type A, D, E. We show that suitable completions of these cluster algebras are isomorphic to the Grothendieck rings of the categories O Z of the corresponding shifted quantum affine algebras. The cluster variables of a class of distinguished initial seeds are certain formal power series defined by E. Frenkel and the second author, which satisfy a system of functional relations called QQ-system. We conjecture that all cluster monomials are classes of simple objects of O Z . In the final section, we show that these cluster algebras contain infinitely many cluster subalgebras isomorphic to the coordinate ring of the open double Bruhat cell of the corresponding simple simply-connected algebraic group. This explains the similarity between QQ-system relations and certain generalized minor identities discovered by Fomin and Zelevinsky.

Fichier principal
Vignette du fichier
clusterO-ADE-final.pdf (444.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04863329 , version 1 (03-01-2025)

Identifiants

Citer

Christof Geiss, David Hernandez, Bernard Leclerc. Representations of shifted quantum affine algebras and cluster algebras I. The simply-laced case. Proceedings of the London Mathematical Society, 2024, 129 (3), ⟨10.1112/plms.12630⟩. ⟨hal-04863329⟩
3 Consultations
1 Téléchargements

Altmetric

Partager

More