Mesoscale simulations of aqueous suspension-based electrophoretic coating process
Résumé
Electrophoretic deposition appears as a method of choice to generate coatings thanks to its ease of implementation and ability to produce deposits of relatively large thicknesses in a single step process. Research in the field has mainly focused on organic suspensions but is now moving towards suspensions in water, non-toxic and more environmentally acceptable. Here, we use Brownian molecular dynamics simulations to investigate the influence of electrophoretic deposition parameters on the properties of suspensions and deposits of mullite particles in water. We show that concentrations of particles and stabilizing ions have a large effect on inter-particle distances and electrical conductivities in the suspensions. To investigate the influence of such differences on the deposits, electrophoretic depositions with two electric fields were simulated. We demonstrate that while inter-particle distances in the deposits are much more homogenous across suspension parameters, different Debye lengths can lead to disparities in ordering (e.g. square or hexagonal).
Origine | Publication financée par une institution |
---|---|
Licence |