Article Dans Une Revue Discrete Mathematics Année : 2025

On a family of automatic apwenian sequences

Ying-Jun Guo
  • Fonction : Auteur
  • PersonId : 1500406
Guo-Niu Han

Résumé

An integer sequence {a(n)} n≥0 is called apwenian if a(0) = 1 and a(n) ≡ a(2n+1)+a(2n+2) (mod 2) for all n ≥ 0. The apwenian sequences are connected with the Hankel determinants, the continued fractions, the rational approximations and the measures of randomness for binary sequences. In this paper, we study the automatic apwenian sequences over different alphabets. On the alphabet {0, 1}, we give an extension of the generalized Rueppel sequences and characterize all the 2-automatic apwenian sequences in this class. On the alphabet {0, 1, 2}, we prove that the only apwenian sequence, among all fixed points of substitutions of constant length, is the period-doubling like sequence. On the other alphabets, we give a description of the 2-automatic apwenian sequences in terms of 2-uniform morphisms. Moreover, we find two 3-automatic apwenian sequences on the alphabet {1, 2, 3}.
Fichier sous embargo
Fichier sous embargo
0 4 25
Année Mois Jours
Avant la publication
mercredi 16 juillet 2025
Fichier sous embargo
mercredi 16 juillet 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04923519 , version 1 (31-01-2025)

Identifiants

Citer

Ying-Jun Guo, Guo-Niu Han. On a family of automatic apwenian sequences. Discrete Mathematics, 2025, 348 (5), pp.114399. ⟨10.1016/j.disc.2025.114399⟩. ⟨hal-04923519⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More