On the intrinsic pinning and shape of charge-density waves in 1D Peierls systems - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue SciPost Physics Année : 2023

On the intrinsic pinning and shape of charge-density waves in 1D Peierls systems

Pascal Quémerais

Résumé

Within the standard perturbative approach of Peierls, a charge-density wave is usually assumed to have a cosine shape of weak amplitude. In nonlinear physics, we know that waves can be deformed. What are the effects of the nonlinearities of the electron-lattice models in the physical properties of Peierls systems? We study in details a nonlinear discrete model, introduced by Brazovskii, Dzyaloshinskii and Krichever. First, we recall its exact analytical solution at integrable points. It is a cnoidal wave, with a continuous envelope, which may slide over the lattice potential at no energy cost, following Fröhlich's argument. Second, we show numerically that integrability-breaking terms modify some important physical properties. The envelope function may become discontinuous: electrons form stronger chemical bonds which are local dimers or oligomers. We show that an Aubry transition from the sliding phase to an insulating pinned phase occurs when the model is no longer integrable.
Fichier principal
Vignette du fichier
2204.00278-4.pdf (2.34 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03871851 , version 1 (25-11-2022)

Identifiants

Citer

Olivier Cepas, Pascal Quémerais. On the intrinsic pinning and shape of charge-density waves in 1D Peierls systems. SciPost Physics, 2023, 14, pp.051. ⟨10.21468/SciPostPhys.14.3.051⟩. ⟨hal-03871851⟩

Collections

UGA CNRS NEEL
29 Consultations
13 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More